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Effect of the third-order filter term on soliton interactions

in soliton transmission systems with filters
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The effect of the third-order filter term on soliton interactions in optical fibers with guiding filters is
theoretically analyzed. We find that this term causes a significant difference to the interaction of solitons
through filters among the regimes of without sliding, with up- and down-sliding frequencies of filters. It is
shown that the interaction between solitons can be more effectively suppressed by up-sliding filters than
that by down-sliding filters in the presence of the third-order filter term. Moreover, the third-order filter
term is found to play a positive role in suppressing soliton interactions in the case of non-sliding.
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The interaction between adjacent pulses is one of the
main limitations of soliton-based telecommunications.
Therefore, reduction of soliton interaction is a promis-
ing proposal and a lasting topic. The interactions
of solitons may be controlled by use of various meth-
ods, such as the temporal synchronous active modula-
tion scheme[1], randomly varying birefringence[2], pho-
tonic crystal fibers(PCFs)[3], and modified group veloc-
ity dispersion(GVD)[4]. More recently, the interactions of
chirped and chirp-free similarities in optical fiber ampli-
fiers have been researched[5]. Another method to control
the interaction of solitons is the use of filters[6,7]. A more
dramatic increase of the distance of soliton collision may
be achieved by sliding the center frequency of the filters
along the transmission line[8,9]. The filters with/without
sliding peak frequency can also effectively reduce soli-
ton timing jitter and overcome the self-frequency-shift,
because through moderate sliding rate it can create a
transmission line that is opaque to noise and transparent
to solitons[10−16].

However, all previous reports neglected the third-order
filter term in studying the interaction of solitons by use of
filters. The effect of the third-order filter term on soliton
transmission and timing jitter in optical fibers has been
analyzed[16,17]. It has been clearly shown that this term
produces a significant difference, in particular, between
the regimes of up- and down-sliding frequencies of filters.

In this letter, we derive the theoretical results of soliton
interactions using guiding filters, taking into account the
third-order filter term. We find that this term greatly
affects the interaction of solitons. The interaction be-
tween solitons can be suppressed more effectively by the
filters with up sliding than that with down sliding in the
presence of the third-order filter term. In particular, for
a very small separation of two soliotns (up to 4.6 times of
the solitons width, which is never found for maintaining
such a small separation of solitons upon propagation in

the known reports to the best of our knowledge), the case
of up-sliding frequency can greatly overcome the soliton
interactions. In addition, for the case of non-sliding, the
third-order filter term plays a positive role in suppressing
the interaction of solitons.

In a transmission line that uses Fabry-Perot (FP)
etalon filters with a mirror spacing d and a reflectivity
R, the distributed filter function is
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where lf is separation between the filters; ωf is the peak
frequency of the filters; c is the light velocity in vac-
uum. We assume that the filters are inserted into the
fiber periodically, and the average effect of the filters in
the transmission line is considered. In addition, to com-
pensate for the loss produced by filters, an excess gain α
is added to the system. Thus, keeping terms through the
third order in the Taylor expansion of Eq. (1), we obtain
the propagation equation in soliton units[17]:
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where β2 and β3 are the coefficients of the second and
third-order filter terms, respectively; ω′

f is the sliding
rate of peak frequency of filters; D is the fiber disper-
sion; t0 = T/1.763, T is the soliton pulse full-width at
half-maximum (FWHM); λ is the wavelength; αR is the
loss coefficient of reflective mirror. It should be noted
that the third-order filter term is inversely proportional
to the pulse duration (Eq. (3)), so this term becomes
more important as the soliton width decreases. Set

u(t, z) = v(t + ω′

fz
2/2, z)

×exp(−iω′

fzt− iω′2
f z3/3), (4)

then v obeys
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where τ = t + ω′

fz
2/2. It is remarkable that in Eq.

(5), one can separate the effect of sliding from that of
the filter. Introducing the usual ansatz for the soliton
u = Asech[A(τ−q)]exp{(iΩτ +iA2z/2+3iβ3Atanh[A(τ−
q)+ iσ]} (Ω is the soliton frequency) into Eq. (5), we ob-
tain the following equations for the amplitude A, mean
frequency ω0, soliton peak position q, and phase σ :
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The mean frequency ω0 is related to Ω by ω0 = Ω−2β3A
2

and A is normalized to 1. From Eq. (6), it requires that
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From Eq. (7b), the mean frequency of soliton is ω0 =
3ω′

f

/

(4β2) + 6
/

5β3.
By means of two-soliton perturbation theory, we con-

sider the two pulses:

vj(z, τ) = Ajsech[Aj(τ − qj)]

exp{(iΩj(τ − qj) + iA2
jz/2 + 3iβ3Aj

tanh[Aj(τ − qj) + iσj ]}, j = 1, 2. (8)

Note that the pulse separation q1 − q2 cannot be smaller
than 3 times of the pulse width. Otherwise, the pertur-
bation that arises from the superposition of two pulses
is too strong to fit the perturbation theory, which leads
to the inaccurate analytic results. By use of the method
of analyzing two-soliton interaction in Ref. [18] to solve

Eq. (6), we obtain the following coupled equations:
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where A = (A1 + A2)/2, k = (ω01 + ω02)/2, p =
(A1−A2)/2 is the amplitude difference, f = (ω01−ω02)/2
is the frequency difference, ∆ = q1 − q2 > 0 is the pulse
separation, and δ = k∆+σ with σ = σ1−σ2 is the phase
difference.

By numerically solving Eq. (9), we obtain the two-
soliton separation versus propagation distance z with
∆0 = 6 and 7 for β2 = 0.15, as shown in Fig. 1.
Three cases are shown in Fig. 1: ω′

f = −0.05 and

β3 = β2/2
[16,17], ω′

f = ±0.05 and β3 = 0, ω′

f = 0.05
and β3 = β2/2. From Fig. 1, we fine that the case of
up-sliding frequency is more effective in suppressing soli-
ton interaction than that of down-sliding frequency in
the presence of the third-order term β3. The numerical
simulations with ∆0 = 6 based on Eq. (2) are shown
in Fig. 2 for ω′

f = −0.05 and (b) 0.05, which further
demonstrates the results indicated in Fig. 1.

In addition, when the initial two-soliton separation is
very small, e.g., ∆0 = 4.6, the advantage of up sliding
is more obvious than that of down sliding in the pres-
ence of β3 (Fig. 3). It is surprising that the case of up
sliding can greatly reduce the soliton interaction in such
small separation with ∆0 = 4.6, which is hardly found in
previous results of studying the soliton interaction. This
is different from the results of Ref. [8] in the absence

Fig. 1. Two-soliton separation versus propagation distance
with ∆0 = 6 and 7 for β2 = 0.15. Solid curves: ω′

f = −0.05
and β3 = β2

/

2; dash-dotted curves: ω′

f = ±0.05 and β3 = 0;

dashed curves: ω′

f = 0.05 and β3 = β2

/

2.
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Fig. 2. Numerical simulations with ∆0 = 6 and β3 = β2

/

2 for

(a) ω′

f = −0.05 and (b) ω′

f = 0.05. t is the tempoval cordinate.

Fig. 3. Two-soliton separation versus propagation distance
with ∆0 = 4.6 and β2 = 0.15. Solid curve: ω′

f = −0.075
and β3 = β2

/

2; dash-dotted curve: ω′

f = ±0.075 and β3 = 0;

dashed curve: ω′

f = 0.075 and β3 = β2

/

2.

Fig. 4. Numerical simulation corresponding to Fig. 3 for the
case of up-sliding frequency with ω′

f = 0.075 and β3 = β2

/

2.

of β3, in which the soliton separation of bound states is
∆0 = 8. Numerical simulation corresponding to Fig. 3
for the case of up-sliding frequency is shown in Fig. 4.

For the case of without sliding frequency, two-soliton
separation versus propagation distance z is achieved (Fig.
5). The results indicate that as the third-order term β3

increases, the suppression of soliton interaction is more
effective, and two solitons with ∆0 = 7 do not collide.
In contrast, the results of Ref. [6] in the absence of β3

showed the collision of two solitons with ∆0 = 8 at z =
80. Numerical simulations are given in Fig. 6, which are
in agreement with the results shown in Fig. 5. There-
fore, from the results above, we find that the third-order
term β3 plays an important role in overcoming soliton
interaction for two cases of up-sliding and without sliding
frequency.

In conclusion, we derive the theoretical results of soli-
ton interactions using guiding filters taking into account
the third-order filter term. We find that this term causes

Fig. 5. Two-soliton separation versus propagation distance
with ∆0 = 7, ω′

f = 0, β2 = 0.075, and β3 = 0 (solid curve),
β3 = β2

/

4 (dash-dotted curve), β3 = β2

/

2 (dashed curve).

Fig. 6. Numerical simulations corresponding to Fig. 5 for (a)
β3 = 0 and (b) β3 = β2

/

2.

a significant difference in controlling interaction of soli-
tons through guiding filters among the regimes of with-
out sliding, with up- and down-sliding filter frequencies.
The interaction between solitons can be suppressed more
effectively in the system with up sliding than that with
down sliding in the presence of the third-order filter term.
In particular, for up-sliding filter, the interaction be-
tween solitons can be greatly overcome. We also reveal
that the third-order filter term also contributes to sup-
press soliton interaction in the case of without sliding.
Our results may be useful to the other solitons, such as
chirped soliton and squeezed soliton[19,20].
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